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Characteristics of the equations of motion 
of a reacting gas 
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Lahoratory ,for Aero- and Hydrodynamics, Technical University of B e y t  
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SUMMARY 

The equations of motion for a chemically reacting gas in the 
absence of viscosity and heat conduction are set up. It is shown 
that the characteristic speed defined by this set of equations is the 
high-frequency limit of the phase velocity of sound waves as long 
as the reaction rate is finite. At infinite reaction rate (chemical 
equilibrium) the characteristics suddenly change to the low- 
frequency sound speed. The nature of this transition is discussed 
in connection with a recent paper of Resler (1957). 

1. INTRODUCTION 
From the point of view of chemical thermodynamics there are no 

essential difficulties in writing down the equations governing the motion 
of a gas which is not in chemical equilibrium. This is done, for example, 
in the theory of irreversible thermodynamics and in papers on laminar 
flame speed. I n  these cases the main accent is on the chemistry. 

If one is interested mainly in the dynamics of the gas flow some changes 
in the choice of variables prove to be advantageous. A special case, flow of 
an ideal gas with lagging vibrational or rotational heat capacity, has been 
discussed from this gasdynamical point of view in an earlier paper (Broer 
1950). One of the results of this work was that the characteristics of this 
type of flow are determined by the high-frequency limit of the speed of 
sound. 

Apparently this fact has been sometimes thought to be slightly puzzling. 
In  a recent paper Resler (1957) has given another treatment from which 
it would appear that this property does not hold. As in the author’s opinion 
this treatment is not entirely satisfactory, it is proposed to return to this 
question, generalizing some of the work of our first paper. We shall pay 
especial attention to the relations with sound dispersion and characteristic 
theories, and since we are solely concerned with the interaction of reaction 
and flow, we shall neglect the effects of viscosity, heat conduction, and 
diffusion. Moreover, for the sake of simplicity, a gas in which only one 
reaction occurs will be considered, 
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2. EQUATIONS OF MOTION 

Under our assumptions the general equations of gasdynamics take the 
following familiar forms. The  continuity equation is 

2 +pd ivv  = 0, 
Dt 

the Eulerian equation of motion is 

D v 1  - + -gradp = 0, 
Dt P 

and the energy equation is 

D 1 
- ( &v2 + U )  + - div(pv) = 0, 
Dt P 

where U is the energy of the gas per unit mass and the other symbols have 
their usual meanings. Introducing the enthalpy per unit mass H = U+p/p 
and using (1) and (2) we derive two equations equivalent to ( 3 )  

and 

D 1 aP - ($v"H)- -- = 0 
Dt P a t  

DH - l D p  - - -_  
Dt pDt  

(4) 

I n  steady flow equation (4) yields the equivalent of Bernoulli's law 
i v 2 + H  = const. on a streamline, but ( 5 )  is the most convenient form for 
most of our work. 

In  the gasdynamical treatment it is advisable to consider H as a function 
of p and p. Moreover, H will depend on a parameter q which determines 
the chemical composition of the gas. T h e  energy equation (5) then can be 
written 

H,- + H p - -  - + H  - Dq = 0. 
Dt ( i);: ' Dt 

1f.there were several reactions we would have to consider a set of parameters, 
but we confine ourselves here to the case of one reaction. In order to have 
a complete set of equations, however, we still need an equation for the rate 
of change of q. It will be assumed that for each value of p and p, there 
exists one equilibrium value of q, which is denoted by p ( p , p ) .  The  
tendency of the reaction will then be to make q tend towards the momentary 
value of q. We now suppose that q can be chosen in such a way that 

- -  D q -  -cc(q-q) 
Dt (7) 

is a good approximation to the rate equation. The  reaction rate cc (a positive 
quantity) depends on the state of the gas and is therefore a function of p ,  p 
and, possibly, q. 

Once the functions H ( p ,  p, q), q ( p ,  p )  and ~ ( p ,  p, q )  are determined, the 
set of equations (l), (2), (6) and (7) is sufficient to describe the flow. 
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3. DISPERSION OF SOUND 

As in the theory of sound propagation, we put u = eu1, p = p ,  +€PI  etc., 
substitute in the equations of motion and retain only terms of the first order 
in E. In order to obtain plane progressive waves we take all first-order 
quantities proportional to expi(wt - k x ) .  The resulting set of homogeneous 
equations for the amplitudes can be solved only when its determinant 
vanishes. This condition then yields the required relation between w and k. 

Remembering that qo = g(po ,po)  since the undisturbed gas is in equili- 
brium, the indicated programme can be carried through by means of simple 
and straightforward calculations. The resulting expression for the square 
of the phase-velocity of sound is 

0 2  - 
K2 

- H,(~w + E) - EH, l j ,  - -  
(H, - l / p ) ( i ~  + a )  + aHYlj, * 

In this dispersion equation the suffix zero in the coefficients has been 
We can rearrange the equation by introducing limiting speeds dropped. 

for high and low frequencies 

From the thermodynamical relation 

it is seen that c corresponds to the usual value for the sound speed when q 
is kept fixed. This is to be expected since the reaction will be frozen at 
sufficiently high frequencies. On the other hand, E can be obtained by 
supposing that equilibrium is maintained throughout, i.e. q = q. Writing 
H{P, p ,  lj(p, P I )  = m p ,  q), we have 

np = Hp+Hqljp,  
which proves this contention. 

Substituting (9) in (S), we obtain 

1 f? 
a c2 H ,  + HQqp * 

7 = - -  where 

At intermediate frequencies the phase velocity is complex, which means 
that there is absorption of sound. 

We note here for further reference that owing to the absorption the 
variable parts of pressure and density are not in phase. The continuity 
equation (l), after linearization, reduces to 

and the Eulerian equation (2) to 
iwp, - po ikv, = 0, 

. .  

Therefore p l / p l  = W2/k2, which is complex. 
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In  the usual theory of sound dispersion due to lagging heat capacities 

H = C, T+C’0 ,  

where C, is the non-lagging specific heat and 0 the temperature of the 
lagging degrees of freedom. If we now take 0 = q, H = (C,/R)(p/p) + C’q, 
it can be verified that this theory is a special case of the formalism of this 
section. 

4. CHARACTERISTICS 
The  set of equations ( l ) ,  ( 3 ) ,  ( 6 )  and (7) is quasi-linear, which means 

that it is linear in the derivatives of the dependent variables v, p ,  p and q 
but not in these variables themselves. A characteristic equation of this 
type involves only one specific combination of derivatives. We consider 
in this section only one-dimensional unsteady flow. A characteristic 
equation then can be interpreted as a law of propagation. Speed and 
decrement of this characteristic propagation depend only on the variables, 
not on their derivatives. 

I n  our problem, (6) and (7) are already characteristic equations as they 
stand. The  speeds involved are equal to v, and the equations therefore 
determine relations between rates of change of some quantities along the 
path of a fluid element. 

Using (7) and (9), we write ( 6 )  in the form 

The  remaining two characteristic equations are linear combinations 
of the continuity and Eulerian equations. When (11) is used to write 
the former equation in terms of derivatives of p ,  it is easily seen that the 
required combinations are 

This equation corresponds to characteristic speeds v c. According 
to the results of $ 3 ,  this implies that the characteristics correspond to 
propagation of a disturbance of infinite frequency. 

I n  the general theory of characteristics, which was not needed here 
since the required linear combination could be found by inspection, the 
characteristic speeds are found from a determinant equation. It is easily 
verified that this determinant has exactly the same structure as that required 
in the dispersion theory, apart from the terms in a,  which do not occur 
in the characteristic determinant. The  algebraic reason for our result 
is therefore obvious. The  physical interpretation, however, has caused 
some difficulties. 



280 L. J. F. Broer 

5. MOTION NEAR EQUILIBRIUM STATE 

‘The trouble with the interpretation of the characteristic speed lies in 
the motion near equilibrium. In this case, the change in condition of a 
fluid element is slow compared with a,  and q- therefore remains very 
small. I t  is to be noted that this does not mean small Mach number or 
Mach number change. The restriction is on the acceleration, not on the 
velocity. 

When q- 4 is exactly zero, the energy equation takes the form 

or 

Using this equation in the continuity equation, we obtain the linear 
combinations 

D+,P apED,,v = 0, ( 1 3 )  
which are again characteristic equations, but now with v t 6 as characteristic 
speeds. 

This result is not unexpected as the gas in equilibrium can be considered 
as a non-reacting gas with appropriate equation of state, since its condition 
depends only on the two variables p and p .  The question, however, is 
what happens when the reaction rate, although large, is finite. One could 
conjecture that the characteristic speeds would in some way change 
continuously from v k c to v rt E ,  but this appears not to be true. As long 
as there is a finite reaction rate, the theory of $ 4  applies and v c is the 
characteristic speed, although it would be expected that the motion tends 
to a solution of ( 1 3 )  with characteristic speeds v & 3. 

Before investigating this behaviour, we first point out that for motion 
near equilibrium q - i j ,  but not cr(q - i j ) ,  is a small quantity since this motion 
is realized only when a is large enough. We have in fact, from (7), 

Therefore, there is at any rate no direct contradiction between (12)  and ( 1 3 ) ,  
since the right-hand side of (12)  does not tend to zero with increasing 
reaction rate. 

We shall now derive equations equivalent to (12)  but with their left- 
hand sides identical with ( 1 3 ) .  We start from the energy equation (6) 
and substitute 

DQ = Dq - + - D (q -q)  = q DP - + q  DP - + - D ( 4 - i j ) .  
Dt Dt Dt Dt Dt Dt 

In this way we obtain 
1 D  1 D 2 - -- = - - - (4 - i j ) .  

Dt z2Dt Rp Dt 
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When (14) is substituted into the continuity equation, we can form 
the linear combinations 

These equations tend directly to (13) when the reaction rate tc goes to 
infinity, because the right-hand side depends on ( q - q )  but does not, as 
in (12), contain a factor tc. 

I n  a numerical calculation procedure use of (15), instead of (12), could 
be advantageous when the reaction rate is sufficiently high. Nevertheless 
it must be kept in mind that the set (15) is not a set of characteristic equations 
in the usual sense. The reason is that the coefficient at the right-hand 
side does not depend on the variables only but contains derivatives. 
A consequence.of this fact is that (15) does not have all the properties of 
characteristic equations. For example, discontinuities in derivatives do 
not propagate with the velocity f C but with k c relative to the gas, no matter 
what the reaction rate is as long as it is finite. exactly, 
do the derivatives drop out from the coefficients in (15) which then goes 
over into (13) and so assumes all the properties of a characteristic set of 
equations. 

The remark on the propagation of discontinuities of derivatives furnishes 
another clue to the situation. Let us consider a small disturbance, confined 
in a bounded region at some moment and having discontinuities in some 
derivative at the boundary of this region. When we linearize the equations 
and take Fourier transforms the spectra will extend to infinity. It is 
therefore not unexpected that the boundary of the disturbance will propagate 
with the high frequency sound speed c. 

Only when q = 

6. AN ALTERNATIVE FORM OF THE EQUATIONS 

A very simple variant on the equations (12) and (15) has been proposed 
It is easy to show, starting from the one-dimensional by Resler (1957). 

continuity and Euler equations, that 
D-+,p fpaD,,v = 0, (16) 

where 

These equations look like characteristic equations. However, it is not 
possible to express a in terms of 21 and the variables of state without using 
derivatives. One could eliminate, for example, Dp/Df by means of (11) 
or (14) but then DplDt will still persist. The  equations (16) do not 
therefore have the properties of characteristic equations. They might, 
however, on occasion be useful for numerical work, just like (15). 

It could easily be assumed that a would lie between c and E ,  but this 
would be fallacious ; it is not even true that a always exists. This would 
require that Dp/Dt and DplDt were of the same sign everywhere, and we 
saw in $ 3  that in the simple example of a plane travelling sound wave there 
is a phase difference between the variable parts of p and p owing to the 
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reaction rate. This entails a phase difference between aplat and a p l a t ,  
which therefore change sign at different moments. 

In  view of the engaging simplicity of (16) this result is somewhat 
annoying. The  equations (12) 
essentially describe propagation of waves with velocity c and a certain 
attenuation owing to dissipation of mechanical energy which is given by 
the right-hand side. Equation (17), in connection with (16), means that 
one looks for the speed of propagation a of a point which has a constant 
wave amplitude as the propagation equations have no right-hand sides 
in this case. This is possible only as long as the chosen value of the 
amplitude is less than that at the summit of the wave. 

It has, however, a sound physical basis. 

7. DISSIPATION 
In  terms of the usual thermodynamic variables, we can write 

d H =  T d S + d p / p + Q d q  (18) 
and consider H as a function of S, p and q. Q = (aH/aq),,s is a quantity 
of the nature of a chemical potential. (Q is different from Hq = (aH/aq),,, 
as defined in $2.) 

As the enthalpy H tends to a minimum for constant values of p and S 
we can calculate q from the equation Q(g,p ,  S) = 0. Therefore, when q is 
close to g, Q will be approximately equal to ,L?(q-q), where ,L? = a2H/aq2 
is a positive quantity since H must be a minimum for q = g. 

When, for given values of p and S, only one equilibrium value of q is of 
interest, Q does not change sign at other values of q. Hence, Q(q-q)  is 
always positive or zero. We now combine ( 5 )  and (18), obtaining 

D S  Dq T -  +Q-  = 0. 
Dt Dt 

This equation corresponds to DSIDt = 0 in ordinary gasdynamics, and 
it could be used instead of the energy equation. Substituting the rate 
equation (7) we find the dissipation equation 

It is seen, therefore, that the dissipation is always non-negative. 
When u is large, (19) is approximately 

which is then of order u-l. 
dissipation vanishes in the limit of fast reaction. 

This yields the expected result that the 

This paper is Communication no. 89 from the Laboratory for Aero- and 
Hydro-dynamics of the Technical University at Delft. 
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